If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-16k-84=0
a = 4; b = -16; c = -84;
Δ = b2-4ac
Δ = -162-4·4·(-84)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-40}{2*4}=\frac{-24}{8} =-3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+40}{2*4}=\frac{56}{8} =7 $
| -7c+9=-23 | | 8x1/2x+5=200 | | x+(x/3)-4.5=0 | | 1/2x-6=28 | | 10=t+1.4 | | 40-8=40+n | | -7=11x | | m/(-2)=2 | | 27=3^3x | | 3x+5=4x-10=180 | | Z+(z-6)-3=10 | | 30+(4x+2)+180-(8+6x)=180 | | 64=4^2x-1 | | -13.9=-2.7+x/7 | | 23=16+q | | 11k+9=32 | | 3x+5=4x-10=90=90 | | 36=5x+9 | | 8x-3=8^4 | | 36=3(u+8)-7u | | 8x-3=84 | | 13x+23=7x-25 | | 8(3/4)x=6(3/4)x | | x+(x+4)=2x+4 | | 0=p/5 | | 0.4(h+5)=0.8+6 | | S=n+(n+2) | | 24+n=43 | | 0.857t-12=0.214+15 | | 4^(9-6x)=(1/64)^(10/3) | | x+20=-32 | | 2.34+17.9s=16.5s+6.6s-8.06 |